Systematics and Biogeography of the Silverside Tribe Menidiini (Teleostomii: Atherinopsidae) Based on the Mitochondrial ND2 Gene

Devin D. Bloom1,2, Kyle R. Piller1, John Lyons3, Norman Mercado-Silva4, and Martina Medina-Nava5

The silverside fish tribe Menidiini (Teleostei: Atherinopsidae) consists of four genera, *Menidia*, *Labidesthes*, *Poblana*, and *Chirostoma*, that are distributed along the Atlantic coast of North America, throughout the Gulf of México, insular United States, and the Mesa Central of México. It has been suggested that *Chirostoma*, *Poblana*, and *Menidia* should be recognized as a single genus under the nominal *Menidia*. To test this hypothesis, phylogenetic relationships within the tribe Menidiini were assessed using the mitochondrially encoded ND2 gene. Monophyly of the Menidiini tribe was supported. Results also failed to support monophyly for the genera *Menidia* and *Chirostoma* as currently recognized. A central Mexican clade, inclusive of *Chirostoma* and *Poblana*, was recovered as monophyletic and strongly supported. Relationships within the Mesa Central clade support a previously recognized “humboldtianum” clade and the paraphyly of *Chirostoma* with respect to *Poblana*.

The New World silverside tribe Menidiini (*sensu* Chernoff, 1986a) consists of approximately 32 species and four genera, *Labidesthes*, *Menidia*, *Poblana*, and *Chirostoma*. The monophyly of the tribe has been supported by morphological (White, 1985; Chernoff, 1986a; Dyer, 1997) and allozymic studies (Crabtree, 1987), based on limited taxon sampling. However, a thorough investigation of relationships within the tribe has not been presented, and there is uncertainty regarding the taxonomic validity and the phylogenetic relationships of the genera and species within Menidiini (Dyer, 1998). This is in part because of highly variable meristics within and among taxa (Chernoff et al., 1981; Chernoff, 1982, 1986b; Duggins et al., 1986; Barriga-Sosa et al., 2002), coupled with an overall lack of diagnostic morphological characters in some groups (Dyer and Chernoff, 1996; Dyer, 1998).

Labidesthes is a monotypic genus found in freshwater throughout the entire Mississippi River and Great Lakes Basins, as well as along the Gulf coastal plain from Texas to South Carolina (Lee, 1980; Fig. 1). The genus *Menidia* includes seven or eight species that occur along the Atlantic and Gulf coasts from Maine to Veracruz, Mexico, the Mississippi drainage as far north as Missouri, and also into the Florida Keys (Gilbert and Lee, 1980; Fig. 1). Species of *Menidia* are generally estuarine and marine fishes, however some taxa have entirely freshwater populations. *Poblana* is endemic to the crater lakes in the eastern central state of Puebla, Mexico. Four species/subspecies of *Poblana* have been described, including *P. alchichica*, *P. letholepis*, *P. ferdebuenei*, and *P. alchichica squamata*, and each taxon occurs in a separate lake (Miller et al., 2005). The silverside genus *Chirostoma* is the most diverse genus in the tribe and has been referred to as a species flock endemic to the Mesa Central in Mexico, although three taxa, *C. jordani*, *C. mequiqui*, and *C. humboldtianum*, extend beyond this region (Barbour, 1973b; Miller et al., 2005; Fig. 1).

Previous studies have indicated the necessity for a comprehensive phylogenetic analysis of silverside tribe Menidiini. These studies were either conducted prior to the advent of modern cladistic analyses (Barbour, 1973b; Johnson, 1974) or they indicate that some groups within Menidiini may not be monophyletic (Gosline, 1948; Johnson, 1975; Echelle and Echelle, 1984), or, alternatively, were broader in scope, investigating higher level relationships and did not include adequate taxon sampling of Menidiini to address the species and generic level relationships within Menidiini (Chernoff, 1986a; Dyer, 1998). Additionally, as stated earlier, there is some question regarding the validity of genera within the tribe Menidiini (Miller et al., 2005; Nelson, 2006). Therefore, our objectives were threefold: use mitochondrial DNA (mtDNA) sequence data to assess the monophyly of the tribe Menidiini, assess phylogenetic relationships among the genera and species within Menidiini, and discuss the resulting biogeographical implications.

MATERIALS AND METHODS

Specimen collection and taxon sampling.—We used specimens from both subspecies, *L. sicculus sicculus* and *L. sicculus vanhynningi*, for the monotypic *Labidesthes*. Representatives of all species of *Menidia* were included with the exception of *M. c.f. audens* and *M. clarkhubbsi*. *Menidia clarkhubbsi* is a gynogenic species from a male *M. beryllina* and female *M. peninsularae*; thus, its mitochondrial genome is identical to *M. peninsularae* (Echelle and Mosier, 1981; Echelle et al., 1983, 1989). All four species of *Poblana* have not been consistently recognized at the species level, as *P. letholepis* and *P. squamata* have been recognized as subspecies of *P. alchichica*.

1 Southeastern Louisiana University, Department of Biological Sciences, Hammond, Louisiana 70402; E-mail: (KRP) Kyle.Piller@selu.edu. Send reprint requests to KRP.

2 Present address: University of Toronto, Department of Ecology and Evolutionary Biology, Toronto, ON, Canada, M6H 2P4; E-mail: devin.bloom@utoronto.ca.

3 University of Wisconsin Zoological Museum, Madison, Wisconsin 53706.

4 Departamento de Ecología Funcional, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico.

5 Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.

© 2009 by the American Society of Ichthyologists and Herpetologists DOI: 10.1643/CI-07-151
(Guerra Magaña, 1986; Miller et al., 2005); however, these taxonomic designations were not based on a published phylogenetic or taxonomic analysis, thus for our study all taxa of *Poblana* were included in the study. All species and subspecies of *Chirostoma* (*sensu* Barbour, 1973b; Miller et al., 2005) were included in this study with the exception of *C. aculeatum*, *C. bartoni*, *C. charari*, *C. melanococcus*, and *C. mezquital* because we were unable to obtain specimens of these species due to their rarity or possible extinctions (Lyons et al., 1998; Bloom et al., 2008).

Specimens were collected from the wild with standard seines, cast nets, electrofishing, purchased from commercial fishermen, or donated by colleagues. Whole specimens or fin clips were placed in 95% ethanol. The 75 individuals used in this study included 26 ingroup and five outgroup species spanning seven genera, three tribes, and both subfamilies of the silverside family Atherinopsidae (Fig. 2). When possible, multiple individuals of the same species were used, and in the case of widespread species, individuals from multiple populations were included (see Material Examined). We included 26 species and 71 individuals from tribe Menidiini, the focus of our study.

DNA extraction, amplification, and sequencing.—Whole genomic DNA was extracted from samples using the DNeasy tissue kit (Qiagen, Valencia, CA). Sequence data was generated for the entire mitochondrial encoded NADH dehydrogenase subunit 2 (ND2) gene (1047 bp) using PCR amplification primers GLN and ASN from Kocher et al. (1995). DNA was amplified in 25 µl reactions consisting of 1–4 µl of template DNA, 2.5 µl buffer, 2.5 µl PCR enhancer, 0.25–0.75 µl MgCl₂, 1 µl of each primer, 1 µl of dNTPs, and 0.5 µl of Eppendorf (Westbury, NY) *Taq* polymerase and sterilized water for the remaining volume. PCR temperature profile settings were as follows: a touchdown protocol was used consisting of an initial denaturation at 94°C for 2 min followed by 5 cycles each of 94°C for 30 sec, 56, 55, 54°C for

![Fig. 1. The distribution of the four genera in silverside tribe Menidiini.](image)

![Fig. 2. Higher order relationships in New World Silverside family Atherinopsidae redrawn from Dyer (1997).](image)
 Phylogenetic analyses.—The resulting sequences were edited and aligned manually using Sequencher ver. 4.5 (Gene Codes Corp., Ann Arbor, MI). Phylogenetic analyses using maximum parsimony (MP) were conducted using PAUP* (Swofford, 2003). The MP analysis employed heuristic searches with equal weights for all characters, 1,000 random stepwise additions with 100 trees saved at each iteration, and tree bisection and reconnection (TBR) branch swapping. Clade support was provided by nonparametric bootstrapping using 1,000 pseudoreplicates and 100 heuristic replicates and TBR branch swapping with ten trees held at each step.

We used ModelTest 3.06 (Posada and Crandall, 1998) to infer the best model of DNA sequence evolution based on the Akaike Information Criterion (AIC; Posada and Crandall, 2004), with each of the three codon positions treated as a separate data partition. Using this model we then implemented a Bayesian analysis (Huelsenbeck et al., 2001) with ten million Markov chain Monte Carlo generations and trees saved every 100 generations using MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003). Four separate runs were performed, and the log likelihood scores for each run were plotted against generations to determine the point at which stationarity was reached. Trees recovered prior to stationarity were discarded as burn-in. Results from the four separate runs were compared to determine convergence of log-likelihood values and posterior probabilities. Posterior probabilities were considered significant when >0.95.

The integrity of various clades or taxonomic groups of interest was examined quantitatively using two topology tests. The groups tested were the monophyly of Chirostoma, Poblana, Menidia (sensu stricto), and the monophyly of Menidia (sensu Miller et al., 2005). Under maximum parsimony criteria, the monophyly of each group was constrained in separate analyses for comparison of tree length relative to the most parsimonious tree. For the Bayesian inference (BI), the monophyly of each group was constrained and the number of post burn-in trees that fit the constraints was divided by the total number of post burn-in trees from the BI analysis. The hypothesis was statistically rejected if 5% or less of the post burn-in trees recovered a tested relationship.

RESULTS

Sequence alignment was unambiguous, with no insertions or deletions. Mean nucleotide frequency for all taxa were $A = 0.216$, $C = 0.377$, $G = 0.161$, and $T = 0.246$, and there was no significant difference in nucleotide composition among taxa ($\chi^2 = 188.264$, $P = 0.95$). There were 538 variable sites, 483 of which were parsimony informative. The maximum parsimony analysis resulted in 60 equally parsimonious trees with a score of 2093. A strict consensus tree is shown in Figure 3 (CI = 0.42, RI = 0.79, and RC = 0.33).

Maximum parsimony and BI methods yielded nearly congruent topologies with the only exceptions corresponding to the placement of Chirostoma attenuatum and several minor differences at the tips of the “Poblana” clade. The monophyly of the silverside tribe Menidiini (sensu Chernoff, 1986a) was strongly supported by both maximum parsimony and Bayesian inference. At the generic level, Poblana and Labidesthes were recovered as monophyletic, whereas Menidia and Chirostoma were paraphyletic.

Labidesthes was sister to the remainder of the tribe, excluding M. extensa. Our data set included two specimens of L. sicculus vanhynningi from Florida and one individual of L. s. sicculus from the Upper Mississippi River basin. Average uncorrected sequence divergence between the two taxa was 14.7% and the specimens of L. s. vanhynningi had identical haplotypes.

Several species of Menidia formed a monophyletic “Menidia” clade exclusive of M. extensa and M. menidia (Figs. 3, 4). Menidia beryllina was a monophyletic basal lineage of the “Menidia” clade, while M. peninsulata was paraphyletic with M. conchorum nested within, and M. colei sister to the M. peninsulata/conchorum lineage. However, Menidia as recognized traditionally and by Miller et al. (2005) was not recovered as monophyletic (Figs. 3, 4). Topology tests indicated that the traditionally recognized Menidia would require 35 additional steps in MP and was not recovered in any of the post burn-in trees (0/80,000).

Chirostoma formed a paraphyletic assemblage with C. arge, C. jordani, and C. conterasi more closely related to Poblana than to other members of Chirostoma. The remaining species of Chirostoma formed a large monophyletic “Chirostoma” group of two major clades, the “humboldtianum” clade of Barbour (1973b) and a clade with C. jordani sister to C. larbarcae. All ten individuals from nine populations of the widespread C. jordani were recovered as a monophyletic group. Within the “Chirostoma” group MP placed C. attenuatum as sister to the rest of the “Chirostoma” group, whereas BI placed C. attenuatum as sister to the “humboldtianum” clade within the larger “Chirostoma” group. There was a general lack of resolution within the “humboldtianum” clade, where sequence divergences were low (approx. 1.0%).

The (C. arge, C. conterasi)(C. arge, Poblana) clade forms a monophyletic group although support values are low, with an MP bootstrap value of 74% and no support from BI. The genus Chirostoma was never recovered as monophyletic among the taxon bifurcations (0/80,000) and required 63 additional steps for monophyly.

The genus Poblana formed a monophyletic group, within a larger clade that included C. arge, C. conterasi, and C. riojai to the exclusion of other species of Chirostoma. The MP analysis supported monophyly for all of the species of Poblana. A clade consisting of Poblana ferdebuenni was sister to a group comprising P. alchichica and an unresolved clade inclusive of P. letholepis and P. squamata. No species of Poblana was recovered as monophyletic in the Bayesian analysis.

DISCUSSION

Both MP and BI infer a monophyletic Menidiini (sensu Chernoff, 1986a; Figs. 3, 4), corroborating conclusions based on morphology (Chernoff, 1986a; Dyer, 1997) and allozymes (Echelle and Echelle, 1984). Sparks and Smith...
Fig. 3. Phylogeny of Menidiini silversides from a strict consensus of 60 equally parsimonious trees resulting following a heuristic search with 1,000 random stepwise additions and 100 trees saved at each iteration. Numbers above branches represent bootstrap values (1,000 pseudoreplicates) shown when ≥50.
Fig. 4. Phylogeny resulting from the Bayesian analysis consisting of 10 million generations. Nodes supported by $\geq 95\%$ posterior probabilities are indicated with an asterisk.
(2004) did not recover Menidiini as monophyletic in a study of Melanotaenioidae, an Australasian group of atheriniform fishes. However, they included only four atherinopsid taxa in a test of monophyly for their ingroup, and thus lacked taxon sampling of atherinopsids to adequately test relationships of this group.

This study supports the hypothesis that Chirostoma and Poblana are closely related, comprising a monophyletic clade that consists of all of the silverside taxa from the Mesa Central, Mexico. Species of Menidia were basal to a clade consisting of entirely Mexican taxa (hereafter “Mexico” clade). Species of Menidia are mostly estuarine and marine in distribution, whereas Chirostoma and Poblana are exclusively freshwater species suggesting the Mesa Central taxa likely arose from a single historical transition from saline to freshwater. Barbour’s (1973b) hypothesis of a diphyletic origin of Chirostoma also is rejected, although this study does support the hypothesis that Menidia is the closest relative to the Mesa Central silversides. Echelle and Echelle’s (1984) study found that M. beryllina was basal to a group containing *M. peninsulue* and all members of Chirostoma, and Poblana (Echelle and Echelle, 1984). Our results differ in that *M. peninsulue* and *M. beryllina* are part of a monophyletic “Menidia” clade that is sister to a larger clade including Chirostoma and Poblana.

Labidesthes siculus was monophyletic and sister to the remainder of the tribe, with the exception of *M. extensa*. Previous studies addressing relationships within Atherinopsidae that have included *Labidesthes* also recovered it as a basal member of the tribe Menidini (Echelle and Echelle, 1984; White, 1985; Chernoff, 1986a; Dyer, 1997, 2006). Florida populations of *Labidesthes* have been suggested to represent a distinct species (Bean and Reid, 1930; Grier et al., 1990; but see Bailey et al., 1954). Although taxonomic decisions should not be based on sequence divergence alone, the large degree of sequence variation observed between populations of *L. s. vanhynngi* and *L. s. siculus* in this study suggests a more comprehensive examination of species limits within *Labidesthes* is warranted.

The phylogenetic placement of *Menidia extensa* has long been an enigma (Hubbs and Raney, 1946; Gosline, 1948; Johnson, 1975; Echelle et al., 1983). Hubbs and Raney (1946) noted its phylogenetic position was difficult to ascertain as it shared morphological characters with *M. menidia*, and also with *M. beryllina*. In this study, the basal position of *M. extensa* renders *Menidia* a paraphyletic assemblage. The recovery of a paraphyletic *Menidia* brings into question the decision to treat Chirostoma and Poblana as synonyms of *Menidia* (Miller et al., 2005) Miller et al. (2005) based the decision to use an inclusive *Menidia (=Chirostoma + Poblana*) on Echelle and Echelle (1984), a study that did not include *M. extensa* or *M. menidia*. However, the results of our topology test as well as those of a decay index (not shown) indicate that with only one additional step *M. extensa* is no longer the basal taxon in the tribe. Therefore, we refrain from revising the status of the genera within the tribe Menidini until additional individuals and multiple genes can be added to clarify the taxonomic status of these groups.

Within the “Menidia” clade, *M. beryllina* was recovered as monophyletic, supporting previous hypotheses based on allozymes that it is a distinct lineage (Johnson, 1975; Duggins et al., 1986). However, *M. peninsulue* was not recovered as monophyletic, with one individual being more closely related to *M. conchorum* than to the other specimen of *M. peninsulue*. This lack of reciprocal monophyly supports the conclusion that *M. conchorum* and *M. peninsulue* are conspecific (Duggins et al., 1986). Duggins et al. (1986) and Johnson (1975) both found *M. menidia* as the basal species of *Menidia*. The topology within the “Menidia” clade is nearly identical to that of Echelle et al. (1989) with *M. beryllina* as basal to a clade inclusive of *M. colei*, *M. peninsulue*, and *M. clarkhubbi*. The “Poblana” clade from this study is congruent with Echelle and Echelle (1984), in that *C. arge* and *C. riojai*, as well as Barbour’s (2002) recently described *C. contrerasi*, are closely related to Poblana. Both our study and Echelle and Echelle (1984) suggest that *C. arge* is the basal taxon, followed by *C. riojai*, and that the taxa of Poblana (sensu stricto) form a monophyletic clade. The species/population interface continues to be of question among taxa in *Poblana*. The parsimony analysis recovered *P. allichippica* and *P. ferdebueni* each as monophyletic lineages, supporting both at the status of species. Meanwhile *P. letholepis* and *P. squamata* were not recovered as monophyletic lineages but rather together formed a single clade to the exclusion of a single specimen of *P. letholepis*, which is generally in agreement with Guerra Mañá’s (1986) conclusion that *P. letholepis* is more closely associated to *P. squamata* than to other taxa of *Poblana*. The lack of reciprocal monophyly further questions their appropriate taxonomic assignment, although this may be explained by incomplete lineage sorting (Avise, 2000; but see Frost and Kluge, 1994; Skinner, 2004). In contrast to the MP results, the Bayesian analysis did not recover the same topology, but instead found none of the species of *Poblana* to be monophyletic.

The MP placement of *P. ferdebueni* is of interest in relation to the other taxa of *Poblana* because it has shield-shaped scales as do all Chirostoma and most species of *Menidia*, unlike the remaining species of *Poblana*, which have round or oval shaped scales (Clyde Barbour, pers. comm.). The basal placement of *P. ferdebueni* in this study indicates that there was a character state change from shield- to round-shaped scales after divergence of *P. ferdebueni* and all other taxa of *Poblana*. The species of *Poblana* are restricted to high altitude crater lakes in the state of Puebla. De Cserna and Alvarez (1995) and Guerra Mañá (1986) suggested that a pre-Pleistocene lake covered at least part of the area and receded from the west to the east, resulting in isolated populations. When the topology of the “Poblana” clade is used to investigate area relationships, a straightforward west to east pattern emerges (Fig. 5). The occurrence of the basal taxa, *C. arge* and *C. contrerasi*, in the Lerma-Santiago basin suggests a former connection to the Valley of México. A number of other fish groups support such a connection, including *C. humboldtiana* and *C. jordani* (Barbour, 1973a) as well as various groups of goodeids (Webb et al., 2004; Gesundheit and Maclas García, 2005; Domínguez-Domínguez et al., 2006) and cyprinids (Schönhuth and Doadrio, 2003; Miller et al., 2005). If the hypothesis of a pre-Pleistocene lake is correct, then the east–west trend from basin to derived taxa suggests that the dry lake receded from west to east. However, the timing of the Lerma–Santiago connection needs further investigation to determine whether in fact the ancestor of “Poblana” had access to the México basin prior to the pre-Pleistocene lake.

The “Chirostoma” clade is a monophyletic group comprising nearly all of species of *Chirostoma*. This study supports
monophyly for the pescado blanco group but rather emphasize the need for greater taxon sampling and information from nuclear genes.

There are a number of competing hypotheses regarding the derivation of Chirostoma and Poblana. Barbour (1973a) argued that ancestral forms gained access to the Mesa Central via a Tertiary marine transgression. Alternatively, Miller and Smith (1986) suggested Chirostoma was derived from an ancestor of Menidia that followed a “Plateau track” whereby the Rio Grande (=Rio Bravo) was connected to the Mesa Central. The Plateau track hypothesis is supported by a number of fish genera such as Ictalurus, Moxostoma, and an extinct Micropterus that are primarily found in eastern United States, but are also represented by species on the Mesa Central (Lee et al., 1980; Miller and Smith, 1986; Miller et al., 2005). Miller and Smith (1986) suggested the great diversity in species number of Chirostoma indicates an earlier connection than that of other taxa following a similar track. Although Echelle and Echelle (1984) favored the Plateau track hypothesis, they also suggested the connection may have been more recent (Plio-Pleistocene) based on molecular clock estimations. The relatively low level of DNA sequence divergence found in our study also supports this more recent connection. The close relationship of Menidia to Mesa Central silversides (Chirostoma and Poblana) does not rule out an origin dating to a marine transgression, but the low levels of genetic divergence observed in both this study and that of Echelle and Echelle (1984) seems to support a more recent origin such as a connection between the Mesa Central and the Rio Grande. The oldest fossil record of Chirostoma is thought to be Plio-Pleistocene in age (Miller et al., 2005), further supporting a more recent connection. Future studies including a molecular clock calibrated using fossil data may prove informative in investigating the origin of Mesa Central silversides.

MATERIAL EXAMINED

Institutional abbreviations follow Leviton et al. (1985). The GenBank accession numbers for ND2 are included for each specimen.

Atherinella crystallina: México, Jalisco, El Tecuan Lagoon, SLU 5105, EF602045.

Atherinella milleri: Honduras, Rio Cangrejal, SLUS104, EF602046.

Atherinella schultzi: México, Chiapas, Rio Palenque, SLU 5103, EF602044.

Basilichthys sp.: Peru, Rio Santuario ($n = 2$), ANSP 180736, EF602042–EF602043.

Chirostoma arge: México, Guanajuato, Río Laja, SLU 5110, EF602099.

Chirostoma attenuatum: México, Michoacán, Lago Pátzcuaro, SLU 5036, EF602082; México, Michoacán, Lago Zirahuen, SLU 5036, EF602083.

Chirostoma chapala: México, Jalisco, Lago Chapala ($n = 2$), SLU 5016, EF602075–EF602076.

Chirostoma consocium: México, Jalisco, Lago Chapala, SLU 5015, EF602077; México, Jalisco, Lago Chapala, SLU 5023, EF602077; México, Michoacán, Lago San Juancito ($n = 3$), SLU 5035, EF602079–EF602081.

Chirostoma contrerasi: México, Michoacán, Lago Negritas, SLU 5080, EF602098.

Chirostoma estor: México, Michoacán, Lake Pátzcuaro ($n = 2$), SLU 5114, EF602067–EF602068; Mexico, Michoacán, Lake Zirahuen, SLU 5026, EF602067.

![Fig. 5. Cladogram of area relationships within the “Poblana” clade imposed on a map of the Mesa Central, México.](image-url)
Chiropomorpha grandocule: México, Michoacán, Lake Pátzcuaro (n = 2), SLU 5118, EF602061–EF602062.

Chiropomorpha humboldti: México, Michoacán, Lago Texipulepec, SLU 5039, EF602073; México, Michoacán, Lake Zacapu (n = 2), SLU 5011, EF602071–EF602072; México, Michoacán, Presa Santa Teresa, SLU 5119, EF602074; México, Nayarit, San Pedro Lagunillas, SLU 5095, EF602070.

Chiropomorpha jordani: México, Jalisco, Lago Chapala (n = 2), SLU 5033, EF602086–EF602087; México, Jalisco, Lago Atotonilco, SLU 5046, EF602088; México, Michoacán, Lake Negritas, SLU 5081, EF602089; México, Michoacán, Lake Cuitzeo, SLU 5111, EF602090; México, Michoacán, Presa Alvareina, SLU 5030, EF602091; México, Jalisco, Río Mazcuña, SLU 5044, EF602092; México, Jalisco, Lago San Pablo de Naszas, SLU 5045, EF602093; México, Guanajuato, Presa Ignacio Allende, SLU 5113, EF602094; México, Guanajuato, Lago Yuriria, SLU 5112, EF602095.

Chiropomorpha labarcae: México, Jalisco, Lago Chapala (n = 2), SLU 5017, EF602084–EF602085.

Chiropomorpha lucius: México, Michoacán, Lake Negritas, SLU 5022, EF602059.

Chiropomorpha patzcuaro: México, Michoacán, Lake Pátzcuaro (n = 2), SLU 5117, EF602063–EF602064.

Chiropomorpha promelas: Tizapan Hatchery, no voucher, EF602060.

Chiropomorpha riojai: México, México, Lago Guadalupe Victoria (n = 2), SLU 5079, EF602096–EF602097.

Chiropomorpha sphyraena: México, Jalisco, Lake Chapala (n = 2), SLU 5025, EF602065–EF602066.

Labidesthes siccus: United States, Minnesota, Lake Winnona, SLU 5101, EF602056.

Labidesthes s. vanhynningi: United States, Florida, Pine Log Creek (n = 2), SLU 5106, EF602057–EF602058.

Membras martinica: United States, Mississippi, Gulf of Mexico, SLU 5102, EF602047.

Menidia beryllina: United States, Texas, Río Grande at del Río, SLU 5109, EF602048; United States, Louisiana, Bayou Lacombe, SLU 5108, EF602049.

Menidia colei: México, Yucatan Peninsula, no voucher, EF602051.

Menidia conchorum: United States, Florida Keys, Grassy Key, no voucher, EF602052.

Menidia extensa: United States, North Carolina, Lake Waccamaw, no voucher, EF602055.

Menidia menidia: United States, North Carolina, Wrightsville Beach, no voucher, EF602050.

Menidia peninsularis: United States, Florida, Panama City, SLU 5107, EF602054; United States, Florida, Wabasso, Indian River, no voucher, EF602053.

Poblana alchichica: México, Puebla, Lago Alchichica (n = 4), SLU 5034, EF602108–EF602111, EF602115.

Poblana ferdiebuen: México, Puebla, Lago Chignahuapan (n = 5), SLU 5028, EF602100–EF602104.

Poblana letholepis: México, Puebla, Lago Chignahuapan (n = 3), SLU 5116, EF602105–EF602110.

Poblana squamata: México, Puebla, Lago Quechula (n = 4), SLU 5115, EF6021120–EF602114, EF602116.

ACKNOWLEDGMENTS

Many individuals assisted in the field acquisition of specimens or graciously donated them. These include H. Bart, P. Cochran, M. Sabaj, J. Quattro, H. Perry, J. Anderson, T. Lankford, Páztcuaro crew, H. Buelna, E. Solorio Ornelas, W. Matamoros, and M. Adams-Mercado. Others including L. Zambrano and E. Díaz-Pardo assisted in various capacities throughout the duration of this project. We are particularly grateful for C. Barbour’s invaluable help confirming the identity of many of the specimens used in this project and for insightful discussions regarding various aspects of the project. This project was supported by grants to K. Piller from the Louisiana Board of Regents and Southeastern Louisiana University. This study was approved by Southeastern Louisiana University’s IACUC (Protocol #002). Permits for the collection of specimens were issued by SEMARNAT (#11374). This manuscript was submitted as partial fulfillment of a master’s degree at Southeastern Louisiana University by D. Bloom.

LITERATURE CITED

