APRIL 2019

Directions: Write a complete solution to the problem below showing all work. Your paper must have your name, W\#, and Southeastern email address. Solutions are to be placed in the envelope for Problem \#2 located in the Department of Mathematics Office, Fayard 308 by 4:30 p.m., Thursday, May 9. No late papers will be accepted.

All papers with a correct solution will be entered in a drawing for a great prize!
Questions concerning the problem of the month should be sent to either Dr. Tilak de Alwis (tdealwis@selu.edu), or Dr. Dennis Merino (dmerino@selu.edu)

Problem: Minimizing a Distance

Consider the function $f(x)=\frac{x^{3}-6 x^{2}+12 x-6}{x^{3}-6 x^{2}+12 x-8}$. The graph of $f(x)$ consists of
two nonoverlapping branches. Find the minimum distance between these two branches. Provide the exact answer.

Hint: First prove, if $P_{0}\left(x_{0}, y_{0}\right)$ is a fixed point on one branch of the curve, then for a variable point $Q(x, y)$ on the other branch to have the minimum distance $P_{0} Q$, the line segment $P_{0} Q$ must be perpendicular to the tangent line to the curve at Q. Please refer to the diagram.

