PROBLEM OF THE MONTH \#2

MARCH 2020

Directions: Write a complete solution to the problem below showing all work. Your paper must have your name, W\#, and Southeastern email address. Solutions are to be placed in the envelope for Problem \#2 located in the Department of Mathematics Office, Fayard 308 by 12:00 noon, Tuesday, March 31. No late papers will be accepted.

All papers with a correct solution will be entered in a drawing for a great prize!
Questions concerning the problem of the month should be sent to either Dr. Tilak de Alwis (tdealwis@selu.edu), or Dr. Dennis Merino (dmerino@selu.edu)

PROBLEM: Minimizing a Perimeter

Consider the function $f(x)=\frac{1}{x}$ where $x>0$. Let O be the origin, P be any point on the graph of f, and Q be the x-intercept of the tangent line to the graph of f at P.
(a) Find the minimum possible perimeter of the triangle $O P Q$. Provide the exact and simplified answer.
(b) What is the largest possible area for the inscribed circle of the triangle $O P Q$? Provide the exact and the simplified answer.

Note: Partial answers might still be considered. So all submissions are welcome!

