PROBLEM OF THE MONTH \#2

NOVEMBER 2020

Directions: Write a complete solution to the problem below showing all work. Your paper must have your name, W\#, and Southeastern email address. Solutions are to be sent as a SINGLE PDF FILE to the submission address talwissubmissions @selu.edu, with the subject heading of the email as Problem of the Month \#2 - November 2020, by 11:59 p.m., Monday, November 30. No late papers will be accepted.

All papers with a correct solution will be entered in a drawing for a great prize!
Questions concerning the problem of the month should be sent to either Dr. Tilak de Alwis (tdealwis@ selu.edu), or Dr. Dennis Merino (dmerino@selu.edu)

PROBLEM: Minimizing an Area

Consider the parabola given by the equation $y^{2}=4 a x$ where " a " is a positive real constant. Let O be the origin and $A(k, 0)$ be a fixed point on the x-axis, where $k>0$. A variable line ℓ cuts the parabola at two distinct point P and Q as given in the diagram below.
(a) Find the minimum possible area for the triangle $O P Q$. Be sure to mathematically justify why your answer gives the minimum area. Simplify the answer.
(b) Prove that for variable lines ℓ, the orthocenter of the triangle $O P Q$ always lies on a fixed straight line. Also find the equation of this line. Note that for any triangle, the orthocenter is the point where its three altitudes meet. An altitude of a triangle is the perpendicular line drawn from any vertex to the opposite side.
Note: Partial answers might still be considered. So all submissions are welcome!

